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INTRODUCTION

The purpose of the pregent investigation haarbeen;to delineate
the role played by surface ertive agents in mass transfer-controlled
corrosion reactions in a saline environment. Major effr has been
directed toward dynamic systems where the metal surface moves
relative to the saline solution. Research on corrosion inhibition by
adsorbed surface-active materials in such dynamic systems has been
largely neglected despite the fact that corrosion and corrosion inhibi-
tion in numerous Naval applications involves motion of a metal sur-
face relative to sea water environment.

The interfacial region between metal and solution is clearly
the site of the corrosion reaction and rate processes are controlled
by mass tvansfer to and through the interfacial film, and which, in
turn, will be controlled by the dynamic shear conditions imposed by
relative flow of metal and solution. While there has heen very little
work reported on the performance of corrosion inhibitors in rotating
systems, there are several related areas of investigation that are
important to the present study.

Several workers have considered the adsorption of simple
- 6)

organics(l and long chain organic surfactants on polarized nickel

(7,89) (10, 11)

and copper surfaces and the mercury-water interface

(8,9)

Hackerman has summarized the observed relationships between

inhibition and molecular structure. Specific effects of organic inhi-

(12,13, 14) ha

bitors on the corrosion of mild steel in acid solution ve
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also been reported. The analysis given in two detailed reviews‘a' 15)
suggests that the effectiveness of organic and inorganic inhibitors
for a given metal depends on the inhibitor concentration, the pH of
the system, the velocity of the metal relative to the solution, time,
surface preparation, surfactant chain length, temperature, cross-
sectional area of the organic molecules and nature of the functional
groups on the inhibitor. Reviews have also appeared on the suita-
bility of several electrochemical techniques for analysis of the
fundamental aspects of the adsorption of organic inhibitors on solid
electrodes(le' 17, 18).

Analysis of basic mass transfer -controlled reactions at the
surface of rotating discs and cylinders and at static surfaces has

received considerable a.ttention(19 B 26). The initial work of Cornet

and co-workers(zz' 23,24) w

as the starting basis for the experi-
mental approach taken in this work.

In this report are summarized the results of our research
and ocur understanding of the processes that control corrosion and
particularly their sensitivity to relative motion and to the presence
of inhibitors. The results should eventually allow for more efficient
use and selection of corrosion inhibitors in dynamic systems of

immediate concern to operators attempting to control corrosion of

marine metal surfaces.
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OUTLINE OF EXPERIMENTAL PROGRAM
The fundamental corrosion (i.e. redox) reaction for metal-
aqueous serated solution systems is given by
aM = 2M’T +4e
O, + 2H20 +4e = 40H
to yield overall, }

O, + 2H,0 +2M = am*T + 400" (1)

2
where M represents, for example, a metal which yields divalent
cations, M++ » in solution.

In order to isolate the role of oxygen, a galvanostatic slow-
rise polarization technique was used where the metal (Monel, cop-~
per or nickel) is operated as a cathode. This metal cylinder can
be rotated at constant but variable speed in a bath of 4% NaCl
(0. 685 molar) solution of known oxygen content.
chain

The alkyl amine surfactants of from C1 to C

0 16
length were selected as model corrosion inhibitors in view of the

(8)

key role of nitrogen centers discussed by Hackerman ' and of in-

(9) in the action of surfactant inhibitors.

creasing chain length
Furthermore, the quantitative hemi-micelle model of surfactant
adsorption at solid-liquid interfacer developed by Fuerstenau, et
al(27' 28), has been tested in detail for alkyl amines at negatively
charged oxide surfaces. The extension to cathodically polarized
metal surfaces is therefore well served by this earlier quantitative

adsorption work.




The form of the "ideal" polarization curve in the galvano-
static slow-rise polarization technique is shown achematically in
Figure 1.

The measured potential at any point of the experiment is
comprised of

1) Equilibrium redox potential (Open-circuit potential), i.e.
.. RT . {oH ) u*h)®
E*+ == 1n -
nF (©,)
where E® is the standard redox potential and (OH ) and
(M++) are concentrations (strictly activities) of hydroxide
and metal ions respectively and (02) is the concentration
of oxygen in the system.
ii) Activation overvoltage (non-equilibrium term), i.e.
B log i/ i
where i = applied current, io = exchange current, and
B = constant.
i11) Liquid junction potential.
iv) IR drop in solution.
v) Potential drop due to other secondary reactions.
vi) Diffusion overvoltage, i.e.
RT , [ 4 ]
== In | ——
nF io-i
where 11 = Diffusion limiting current.

In the present system contributions of (iii) , (iv) and (v) are

assumed to be negligible. Region 1 represents the electrochemical
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Figure 1. Schematic representation of a polarization
curve. In Region 1 electrochemical reac-
tions are rate controlling; in Region 2 mass
transfer (i.e. oxygen mass transfer) is rate
controlling (i) = mass transfer limiting
current; Region 3 is controlled by hydrogen
evolution.
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part of the polarization curve. Diffusion overvoltage, represented
by a sharp rise in potential (Region 2 on the curve in Figure 1)

is predominant as the applied current approaches the diffusion
limiting current. In the region where i is greater than 11 (Region
3 in Figure 1), the shape of the polarization curve is primarily due
to hydrogen evolution and its activation overvoltage. Since the dif-
fusion limiting current is in effect the amount of current necessary
to protect the cathode from being corroded by oxygen, it is

necessary to study the effect of various parameters on the limiting

- current. The variables being considered in the present study can

be divided into physical varisbles ansl chemical variables. The
physical or mechanical variables, for example speecd of rotation of
the electrode, must be examined in order to separate out strictly
mass transfer effects on O2 reduction at the electrode surface.
Then the chemical variables such as inhibitor conceatration and
chain leugth can be expressed in terms of the reactions at the moving

surface.

EXPERIMENTAL METHOD
In order to incorporate effects due to mass transfer between
the metal surface and the liquid into polarization phenomena, an
apparatus with a rotating cylindrical cathode was designed and con-
structed. The general layout of the experimental assembly and its

electrical circuits is shown schematically in Figure 2. The major

oy o1t |2, 18
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Figure 2. Apparatus for polarization studies.
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part of the research program to date has been concerned with Monel
metal as the rotating electrode. The Monel (67% Ni, 33% Cu)
electrode is cleaned mechanically, etched with concentrated hydro-
chloric acid, and washed repecatedly before immersion in the 4%
NaCl solution. The cleaning procedure yields a reproducible
surface in that under a given set of solution conditions the observed
limiting current is constant.

The alkyl amine corrosion inhibitors were used as ammonium
acetate saits. These were prepared by dissolving primary amines
obtained from Armour Industrial Chemical Company in benzene and
adding an equimolar quantity of glacial acetic acid. The acetate salt
was recrystallized from benzene by cooling and excess benzene was
removed in a vacuum desicator.

The oxygen content was varied by controlled exposure of air-
saturated water to helium gas for various time periods. In most
experiments the oxygen content was maintained reasonably constant
by exposing the electrolyte solution to atmosphere for a day for
oxygen saturation. During the entire experiment the electrolyte is
left open to atmosphere. Bubbling oxygen throv~h the solution caused
uncontrollable supersaturation and subsequent scatter in experimental
results. The oxygen content of the saline solutions was determined

by the standard Winkler method.
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RESULTS AND DISCUSSION:

Physical Variables

In order to delineate the role of mass transfer reactions in ro-
tating systems, the polarization behavior of Monel in the absence of

inhibitor, at fixed O, content (6.2 + 0.2 ppm) and fixed pH (6.0 + 0. 2)

has been determined as a function of speed of rotation. The results are
shown in Figure 3. As the speed of rotation increases the thickness of

the hydrodynamic boundary layer decreases thereby increasing the oxy-
gep concentration gradient. In order to achieve protection of the metal

surface, larger currents are required at higher R.P.M.

The present experiments represent turbulent flow conditions
and are amenable to analysis by the method developed by Eisenberg, et
al.(zg) and given in detail in Appendix I. In Figure 4 the present data
are compared to that calculated by the method of Eisenberg, et al., and
the close agreement confirms that O2 reduction at the Monel electrode
is a typical mass transfer, diffusion-limited rreaction

A further indication of the importance of limiting diffusion current

in corrosion is provided by the results of Figure 5. For each of the three

separate polarization curves the oxygen content was the same (6.3 to 6.4

ppm), but because of deliberate differences in electrode preparation, the

rest potentials (not shown in the figure) were not the same. Despite this ;
difference in rest potential and difference in behavior in Region 1, the t

limiting diffusion current (il) was the same in each expecriment, E
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Lo This is of considerable agsistance in analysis of chemical
effects at the rotating electrode since it is not always possible to
obtain identical starting surfaces. The wide range of rest potentials,
~0.165 to -0.207v, (not shown in Figure 5) is not usually encountered and
was obtained in the present study by allowing the freshly prepared
electrode to stand undisturbed in the 4% NaCl solution for periods
up to 84 hours.

The effect of increasing the temperature is shown in Figure
6 for a static Monel electrode. Temperature has several separate

mg_ffec_ﬁs , the summation

of which is that the limiting diffusion current

increases with increase in temperature. Experiments are now in
4 progress where a wider temperature range is being used. Separate

effects of temperature on the diffusion coefficient and on the oxygen

solulibity will be calculated and separated out in order to measure
the activation energy for the mass-transfer process.
The general effect of increased limiting diffusion current

(26)

with increased temperature is in agreement with recent work on

DT O e e e et o . e

cupric ion reduction at a rotating copper cathode where an activation

energy of 5,06 kcal for Cu reduction per mole was obtained.

3 It is especially important to examine quantitatively the limit-

E ing diffusion current and thus the cathodic protection as a function of

1 temperature, rotation and inhibitor concentration. Optimum protec-

tion of metal components in marine environments must be adjusted as

o

the sea water temperature changes. Current experiments should

rere

-y

ql‘. Ladain - o

e e o




13

‘uoynios ay}

0} awy aansodxa SNOWIeA 40 ‘"W 'd°H 0 ‘IDEN N €89 ‘0

PSjeINIes-.ITe Ul 9POYIED [SUOW 3Y} JOJ 83AIND uoljezirerod °S aandig
(sdwop) INIHEND

N..O_ m..O_ . ¢oO_ nlo_ _.
TIT T T T T T T T T T 1 LLARRE .Y = = A%
— -
— —v0-
- -
— —90-
e -
- —{s0-
B ) o B
— ov v —Ho't-

el a

- SHNOH —42'1-
_ wdd p'9 ~ INILNOD %0 -
] fapetp 1 b1 NS | W I I B | PR

-0l

¢-Ol 9-0l
(puo/dwo) ALISN3Q LN3HHND

($4104) “3°0°S 8A VILN3ILOd




-saanyesadwa) uaIagJp 18 ‘"W 'd°H 0 ‘IOEN W G890
pajeanjes-Jate ul Iapoyjed TSUOI AU} JOJ S3AIND UOTIEZIIR[Od °9 aJndryg

(sdwo) 1N3IHHND

«
| = 2-0l ¢-0l »-Ol ¢-Ol_,
m mrrv r i prrrrrri T LI ¢0-
r [ —v' 0 :
| o d
! — =1 IO.-
o-Z
= ~o0- 3
i ]| =
<
- —4g0- »
w
_ - o
m A
— —O0I- _ ]
S
- - -
J,p2 O G
- 2,1l ® ~21-
1 — 4
W 1 TN THTE N B TR N I P
| o) -0l 50l d

4 (gwosdwo) ALISN3Q LN3HEND

SRR e o



—r——_

e o2 —:—'%

15
provide a better understanding of the effect of temperature on

protection of moving metal components in sea water in the presence

of inhibitors.

Chemical Variables

In this research, we have considered two different chemical
variables -- the effect of adsorbed surfactants and the effect of
oxygen content.

Organic Surfactants: When alkylamine surfactants are pre-
sent in the system, drastic reductions in the diffusion limiting current
are obtained at concentrations as low as IO'GM_ . This is shown in
detail in Figures 7, 8, 9 and 10, representing the effect of 10, 12, 14
and )6, respectively, carbon amine surfactants.

Several important points can be raised immediately. Firstly,
the decrease in current requirements for effective protection are
very large for such small concentrations of organic additive. In this
regard, for example, a concentration of 10-51_\/1- of the C16 amine
for the Monel electrode rotating at 1400 R. P.M. almost recovers the
low protection current of a static Monel electrode (compare Figures 3
and 10). It is therefore realistic to think in terms of removing almost
completely the deleterious effect on corrosion due to increased speed
of rotation by addition of amine-type surfactants. This coﬁclusion is
considered to be valid whether one considers the amines as corrosion
inhibitors themselves or as surfactants that have synergistic action

when used with conventional inhibitors. The synergistic action of
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amines can be likened to the co-operative adsorption phenomena
described by Yamada and F‘uerstenau(am.

The second general feature of the rusults shown in Figures 7
to 10 is that there is usually no clearcut (vertical rise) limiting cur-
rent for systems with the amines present. However, the polarization
curves and the tendency to a diffusion limiting ~urrent are clearly
shifted to lower current densities. The absence of a definite 11 value
is thought to be related to the heterogeneity of the system in that
amine diffusion to the surface may interfere in a variety of as yet

unknown ways with the O, diffusion to the electirode.

2
A third feature of the curvesa is that although there is some

cross-over of the curves in Region 1 with increase in amine concen-

tration, the limiting current region decrcases uniforinly with concen-

traticn. Vetter(al)

has commented on the variability that is sometimes
observed in the reaction-controlled region and apparently the present
amine surfactants may interfere with these various reaction steps.
If the amine surfactants act as inhibitors by a strictly adsorp-
f tion role, i.e. the adsorbed amine presents a diffusiun barrier to the
| reacting O2 molecules, then the well-established hemi-micelle theory
i of surfactant adsorption(27' 28) should apply to the corrosion system. In

outline, the hemi-micelle model is

i) At low concentration, the surfactant ions adsorb at isolated

slies on the metal surface such that adsorption is not mark-

edly dependent on alkyl chain length.




T
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ii) With increasing concentration, an abrupt increase in
adsorption is observed due to the formation of two-
dimensional aggregates analogous to micelle formation
in bulk solution. In this region, the surface adsorption
density ( I‘1 moles cm-z) at a given_t;ulk solution equil -
ibrium concentration (C, moles cm ) is strongly

b
7,2
dependent on chain length. Thus‘(2 »28)

-Zie\ps + n%HJ
kT

where r is radius of the polar head group of the surfac-

l"i = ZriCrexp

o—m—— e

tant, k is Boltzmann's constant, T is the temperature,
Z’i is the charge of the polar group, e is the electronic
charge, Y is the potential at the adsorption plane,

n is the number of carbons in the chain and ¢CH is the
2

nydrophobic bonding energy per CH2 group; is

®
CH2
approximately 1 kecal. mole-l. For the present saline
solution, the ws term is probably constant and small, and

the major adsorption energy is the hydrophobic bonding
contribution n¢CH2 .

That the hemi-micelle adsorption concept applies to the
action of alkyl amine surfactants in saline solutions for a rotating
Monel electrode is illustrate;d in Figure 11. In this figure, the
current density at an applied voltage of -1. 2 volts vs S.C. E. (the
potential at which limiting current was obtained in the absence of
surfactants) is plotted as a function of the alkyl amine concentration
for each of the four different chain lengths. Two features of these
curves are that there is an abrupt decrease in current requirements '

over a narrow concentration range for each surfactant and there is a
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strong chain length dependence.

The continuing experimental program is designed to test
further the application of hemi-micelle theory to the action of sur-
factants on reducing oxygen transfer to the metal surface. The
data of Figure 11 summarize the observed concentration and chain
length effects and the similarity to the hemi-micelle phenomenon
offers strong qualitative evidence that inhibition of oxygen tranafer
is due to adsorption processes.

The effect of oxygen content: In the previous sections of this

report, the oxygen content was kept constant so that attention could be
focused on such variables as speed of rotation and surfactant concen-
tration. However, since O2 is clearly the species upon which atten-
tion must be focused it is necessary to characterize the redox reaction,
i.e., oxygen reduction at the electrode surface.

In Figure 12 is shown the effect of variable oxygen content on
the polarization curve for a static Monel electrode and one rotating at
1400 RPM. No surfactant was present and the solution was 4% NaCl
at pH 6.0 t 0.2 in all cases.

The oxygen diffusion limiting current decreases uniformly in
each case with the layer decrease being observed with the rotating
system, This is expected in view of the fact that the hypothetical
diffusion layer is much thinner in the rotating system and diffusion

gradients are much steeper. The relation between O2 oxygen content

in the solution at the limiting current and the limiting current density
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itself is shown in Figure 13(a) and (b). When the metal cylinder is static

no exact relationship can be predicted. However, for turbulent flow case
at 1400 RPM the proportionality constant between current densgity and O2

content {(ppm) of 1.2 x 10~4 of the experimental plot compares very well

with that calculated (1.18 x 104) based on the method of Eisenberg, et al, (29).

From these experimental results it can be concluded that the
presence of the amine=-surfactants in the system is analogous to having
lower oxygen contents, as indicated by the shift of the diffusion-limiting
currents to lower values in the case of increasing surfactant concen-

tration or decreasing oxygen content.

SUMMARY AND CONCLUSIONS

The galvanostatic polarization technique has been used to
detect the specific role of concentration and chain length of amine sur-
factants in the corrosion reaction at the metal-aqueous solution inter-
face, specifically at the Monel~saline solution interface.

The chain length effect, i.e. increas.d corrosion inhibition with
increased chain length, is considered to be related to hemi-micelle
formation or two-dimensional condensation of adsorbed surfactant.

These effects are observed for a rotating system and the dele-
terious effect of rotation (i.e., the need to increase the cathodic protec-
tion) can be offset by selecting a concentration and chain length of

surfactant.

In this continuing program, efforts have already begun to
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characterize such effects on rotating electrodes in more reactive
systems. Actual adsorption densities will be obtained in order to
seek quantitative relationships between corrosion inhibitor
efficiency and the structure of the gurfactant,

The role of adsorbed surfactant in controlling the oxygen
diffusion limiting current will be examined quantitatively so as to
relate inhibitor effects to the oxygen reaction in the rotating system.
The effect of temperature will also be considered quantitatively so
that meaningful assessments can be made of inhibitor efficiency for
given conditions of

(a) oxygen concentration

(b) temperature of saline solution

(¢c) speed of rotation.
Such results should eventually be of application to the problem of the
control of corrosion by the use of cathodic protection and corrosion

inhibitors in a variety of conditions in the marine environment.
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APPENDIX 1

CALCULATION OF THE LIMITING CURRENT

2.07x10 3 em?/ Sec.
3

Diffusion Coefficient, D, for O2 at 20°C

"

Kinematic viscosity, v, for O, at 20°C cmzlSec.

2 10.1x10

Schmidt No. = = 488

Olx

. Uxd _ HIOxdxR.P.M. d
Reynolds No., Re, = m 50 x 3

where d

characteristic diameter of the cylinder = 1.91 em

and U

the speed of rotation of the cylinder

_ nd®R.P.M.
60v

3.14x (1. 91)°x R. P. M.
10.1x10 3 x 60

18.3 R.P. M.

The experimental Sherwood No.,

d

Sh = nFACxD

i
—-x
A

current density, ampere

2
cm

i
where N

n number of electrons taking part in the reaction

Faraday constant, amp, Sec.
egvt.mole

F

B

concentration gradient

= bulk concentration of reacting species, since at the mass transafer
limiting current concentration of reactiig species at the surface
of the metal is agsumed to be zero

2

D = Diffusion constant for reacting species in %’;n;-

— - —— ———
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ix 1,91
45.6 x 4 x 96500 x C

-5
o X 2.07x 10

= [5.24 x 1073

c

L
S5.24 x 1073 x 32 x 106 T ] a.mp-1 « ppm
L Oy

1

= 11.65 x 105 Ci ] a.mp"1 « pom

L 02

The Sherwood No., obtained on the basis of the expression given by
Eisenberg, et al

0.356 0.7
x

Sh = 0.079xSc Re

= 5.50x R.P.M.o"7

Comparing (1) and (2)

i -1 . 0.7
[1,55,; 105 _I_]Eu'np xppm = 5.55x R.P.M.
2

Co

Sio= _5&_5 R.P.M:0'7xCO (ppm) | amp
1.65 x 10 2

S X R.P.M.O' 7xCO (ppm)] amp
2

= [3.38 x 10
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